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We present a mathematical model describing evolution of false bottoms often met between an under-ice
melt pond and the underlying ocean during summer. The model treats a false bottom as the region of
mixed phase (mushy layer) whose coordinates depend on time and determine the phase transition area.
As the heat and the salt fluxes in the ocean are strongly influenced by turbulence and the ice meltwater
accumulating underneath the ice cover is practically fresh, we use modified boundary conditions for heat
and mass fluxes at the interfaces of phase transition. Explicit analytical solutions (thickness of false bot-
tom and growth rates of its boundaries, temperature and salinity distributions, solid phase fraction and
ocean-to-ice heat flux) of the nonlinear model under consideration are found. Model predictions are in
good agreement with existing experimental data and physical concepts of phenomena under study.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

During the summer, when the air temperature is above 0 �C the
sea ice – atmosphere interface undergoes ablation to occur. A con-
siderable fraction of meltwater gathers in surface puddles thereby
reducing the surface albedo. This meltwater can percolate into the
ice matrix, leading to a strong reduction in the surface salinities.
Untersteiner [1] showed that the meltwater flux into the ice re-
duces salinities at the top of the ice column to values close to zero.
As a result of these processes, low-salinity meltwater comes into
contact with seawater, each at or close to their respective freezing
points. This meltwater can be retained under thin ice in bottom
depressions, leading to fresh water lenses or forming what Hanson
calls ”under-ice melt ponds” [2]. Martin and Kauffman demon-
strated in their laboratory experiments that freezing of under-ice
melt ponds can be explained by double-diffusion at the interface
between freshwater and seawater [3]. Initially, ice platelet crystals
would form in the contact zone and grow to centimeter or decime-
ter size if an attachment prevented their removal from the halo-
cline. Subsequently, more solid ice cover would form along the
entire freshwater – seawater interface, stabilized by a mesh of
crystals and other anchor processes. This underwater ice is called
false bottoms [2–6]. When this underwater ice sheet forms, it mi-
grates upwards due to bottom ablation [2,3] (for example, the Arc-
tic Ice Dynamics Joint Experiment (AIDJEX) demonstrated some
rapid upward migration of the false bottoms with relation to abla-
tion under nearby thick ice). The field experiment Surface Heat
Budget of the Arctic Ocean (SHEBA) showed that approximately
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15% of a total of more than 100 mass-balance gauges developed
false bottoms during the ablation season [6,7]. It has been found
experimentally that under-floe melt ponds and false bottoms cov-
ered half of the flow bottom of the drifting station ‘‘Charlie” [2]. It
is important to keep in mind that the formation of false bottoms is
the only process by which significant amounts of new ice can be
formed during the summertime. Nansen from his observations in
the Beaufort Sea noted that the heat transfer from the trapped
fresh water, with a temperature of 0 �C, to the arctic sea water,
with a temperature of �1.6 �C, is the only source of ice accretion
during the polar summer [8]. An additional point to emphasize is
that false bottoms play an important role as reservoirs of meteoric
water (snow meltwater). They are important in the transfer of pol-
lutants from the atmosphere into the ice pack [9]. Taking into ac-
count all things considered, we present a theory of false bottom
migration on the basis of macroscopic heat and mass transfer
equations and boundary conditions when the phase transition oc-
curs in a mixed layer (mushy region) and the heat and mass fluxes
in the ocean are influenced by turbulence.
2. Model of false bottom evolution

Let us now consider the process when a false bottom direction-
ally freezes upwards. We describe a system once a thin veneer of
young ice representing a false bottom has been formed (the initial
formation of false bottoms usually took only a couple of hours in
natural conditions [10]). A schematic diagram of the process is
plotted in Fig. 1 (here z is the spatial coordinate, aðtÞ and bðtÞ are
the fresh water – false bottom and false bottom – sea water phase
transition interfaces, respectively, t is the time). The regions
aðtÞ < z < 0; z < bðtÞ and bðtÞ < z < aðtÞ are, respectively, filled
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Nomenclature

a fresh water – false bottom boundary
b false bottom – sea water boundary
cw specific heat of water
D molecular diffusivity of salt in sea water
ki thermal conductivity of ice
kw thermal conductivity of water
LV latent heat
m liquidus slope
Sm salinity
S1 salinity far from phase transition boundaries in the

ocean
t time
T1 temperature far from phase transition boundaries in the

ocean

u friction velocity
z spatial coordinate

Greek symbols
ah turbulent coefficient for heat
as turbulent coefficient for salt
qw density of water
u solid phase fraction

Subscripts
a and b point at the physical parameters of boundaries aðtÞ and

bðtÞ.
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with the fresh water, the sea water and the false bottom consisting
of a mixed (liquid and solid phases) zone [3,5]. We shall treat this
zone as a quasi-equilibrium mushy layer [11,12]. Since a relaxation
time of the temperature field is far less than characteristic times of
the process, the temperature field in the mushy layer (false bot-
tom) will be considered as a linear function of the spatial
coordinate

Tmðz; tÞ ¼
TaðtÞðz� bðtÞÞ þ TbðtÞðaðtÞ � zÞ

aðtÞ � bðtÞ ; bðtÞ < z < aðtÞ; ð1Þ

where Ta and Tb stand for the temperatures at the phase transition
boundaries a and b. The linear form (1) of the temperature field is
confirmed by laboratory experiments [3]. Physically this means that
the temperature field and the solid fraction uðz; tÞ within the false
bottom undergo only insignificant oscillations with time (u is also
with z). Theoretically this conclusion was demonstrated by Alexan-
drov and Malygin [13] and by Alexandrov et al. [14] for solidifica-
tion of leads. Taking into account that the salinity field ðSmðz; tÞÞ
Fig. 1. (a) A sketch of an under-ice melt pond [3]. (b) A schematic diagram of the
process.
in the mush is a nearly linear function of z (see among others,
[3]), we use the Scheil formula [15]

o

ot
ðð1� uÞSmÞ ¼ 0; bðtÞ < z < aðtÞ: ð2Þ

Eq. (2) implies that all salt is displaced by ice into the liquid matrix
of the system. We shall consider that the mushy layer (false bot-
tom) is in thermodynamic equilibrium. Therefore, the temperature
and salinity distributions are related by the liquidus equation

Tmðz; tÞ ¼ �mSmðz; tÞ; bðtÞ < z < aðtÞ; ð3Þ

where m is the liquidus slope. The linear form of Eqs. (1) and (3)
agrees closely with the laboratory experiments [3] where nearly lin-
ear functions Tm and Sm with respect of z have been observed.

Laboratory experiments [3] show that heat and the salt fluxes at
the phase transition boundary z ¼ aðtÞ determined from the fresh
water side are far less than their analogs determined from the
mushy layer side. This being the case, the heat and mass balance
boundary conditions can be written in the form

LVua
da
dt
¼ ðkiua þ kwð1� uaÞÞ

oTm

oz
; ð4Þ

Sa
da
dt
¼ �D

oSm

oz
; ð5Þ

where LV is the latent heat parameter, D is the diffusion coefficient,
k is the thermal conductivity, the subscripts i and w refer to ice and
water, respectively. Eq. (5) indicates that the rate of salt diffusion
must be sufficient to keep up with the rate of boundary aðtÞ (this
model assumption is backed by the laboratory experiments [3]
demonstrating that the salinity gradient is practically negligible in
the fresh water region at z P aðtÞ).

As the rate of motion of the phase transition boundary z ¼ bðtÞ
undoubtedly depends on the turbulent motion in the ocean, let us
write down the boundary conditions as follows [10,16,17]

LVub
db
dt
¼ ðkiub þ kwð1� ubÞÞ

oTm

oz
þ ahqwcwuðT1 � TbÞ; ð6Þ

Sbub
db
dt
¼ asuðS1 � SbÞ; ð7Þ

where T1 and S1 are the far-field properties of the salt water, u is
the friction velocity, qw and cw are the density and the specific heat
of water, ah and as are the turbulent transfer coefficients for heat
and salt respectively. The ratio of exchange coefficients ah=as

depends on the molecular diffusivities for heat ðjÞ and salt ðDÞ at
that ah=as ¼ ðj=DÞn [17] with 2=3 < n < 4=5 [18,19]. We put
35 6 ah=as 6 70 after Notz et al. [10]. The aforementioned model
(1)–(7) represents a nonlinear set of equations and boundary
conditions imposed at moving phase transition interfaces. This



ig. 2. Friction velocity during AIDJEX in accordance with Rossby-number similar-
y theory [10] (axis to the left). Experimental data in accordance with the AIDJEX
eld campaign and theoretical predictions (axis to the right). Two curves based on
xed values of u are calculated from expression (13) and one curve based on time
scillations of uðtÞ is calculated from expression (14). Thermophysical parame-
rs used in calculations [3,10]: ah ¼ 0:0095; ah=as ¼ 35; kw ¼ 5:86 � 10�3 J=
m c �CÞ;ki ¼ 22:19 �10�3 J=ðcm c �CÞ;cw ¼ 4:187 J=ðg �CÞ;qw ¼ 1 g=cm3;LV ¼ 308:16 J=

3; að0Þ � bð0Þ ¼ 2:5 cm;T1 ¼ �1:5 �C;m ¼ 5:3 � 10�2 �C psu�1; S1 ¼ 29:8 psu.
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model describes nonstationary freezing in the presence of a mushy
layer, playing the role of a false bottom, with heat and salt fluxes at
the lower boundary influenced by turbulence. How to construct ex-
act analytical solutions of the above-mentioned model is discussed
below.

3. Exact analytical solutions

Integrating Eq. (2), we find the solid phase fraction in the mushy
layer

uðz; tÞ ¼ 1� ð1� ubÞTb

Tmðz; tÞ
; ð8Þ

where Tmðz; tÞ is determined by expression (1). Combining the
boundary conditions (4), (5) and taking into account Eq. (3), we
get the solid phase fraction at the upper phase transition interface

uaðtÞ ¼
KTaðtÞ

ðK � 1ÞTaðtÞ � Tp
; K ¼ kw

ki
; Tp ¼

DLV

ki
: ð9Þ

Now substituting uaðtÞ from expression (9) into expression (8) at
z ¼ aðtÞ, we obtain temperature Tb at the lower boundary in terms
of temperature Ta at the upper boundary

TbðTaðtÞÞ ¼
T2

aðtÞ þ TaðtÞTp

ðub � 1ÞððK � 1ÞTaðtÞ � TpÞ
: ð10Þ

As the temperature and salinity fluxes are proportional in accor-
dance with Eqs. (1) and (3) we can find a set of equations connect-
ing the mushy layer (false bottom) thickness hðtÞ ¼ aðtÞ � bðtÞ and
the phase transition temperature TaðtÞ. With this aim in mind we
equate derivatives db=dt from Eqs. (6) and (7) and subtract deriva-
tives in the left-hand sides of Eqs. (4) and (7). As a result, we have

aðtÞ � bðtÞ ¼ Q 1ðTaðtÞ; tÞ; ð11Þ
dðaðtÞ � bðtÞÞ

dt
¼ Q2ðTaðtÞÞ

a� b
þ Q 3ðTaðtÞ; tÞ; ð12Þ

where

Q1ðTaðtÞ; tÞ ¼ �
ðkiub þ kwð1� ubÞÞðTa � TbÞTb

asuLV ðTb þmS1Þ þ ahqwcwuðT1 � TbÞTb
;

Q2ðTaðtÞÞ ¼
ðkiua þ kwð1� uaÞÞðTa � TbÞ

LVua
;

Q3ðTaðtÞ; tÞ ¼
asuðTb þmS1Þ

Tbub
:

Here we bear in mind that the arguments of functions Q1;Q2 and Q3

may be dependent on time in an explicit form (not only by means of
dependence TaðtÞ) in the case that u; T1 or S1 are time-dependent
too.

Let us now consider the special case that all values u; T1 and S1
are constants (or all of them are averaged over their variations in
time and changed by constants). Then Q1 and Q3 as well as Q2 de-
pend on t only as composed functions of TaðtÞ. If this is really the
case, substitution aðtÞ � bðtÞ from (11) into (12) gives an explicit
function tðTaÞ of the form

tðTaÞ ¼
Z Ta

Ta0

FðTaÞdTa; FðTaÞ

¼ dQ 1ðTaÞ
dTa

Q1ðTaÞ
Q 2ðTaÞ þ Q1ðTaÞQ3ðTaÞ

: ð13Þ

The initial temperature Ta0 (determined at t ¼ 0) can be found from
the algebraic Eq. (11) on condition that the initial coordinates að0Þ
and bð0Þ are known. Once integral in the right-hand side of (13)
has been calculated, the inverse function TaðtÞ can readily be
obtained.

In the general case when one of the values u; T1 or S1 becomes
dependent on time, we can get the initial-value problem (Cauchy
problem) for TaðtÞ; if so, substitution aðtÞ � bðtÞ from (11) into
(12) gives

dTaðtÞ
dt

¼ f ðTa; tÞ; Tað0Þ ¼ Ta0; ð14Þ

where f ðTa; tÞ is known function. For the sake of simplicity, we will
not write out this elementary but exceedingly lengthy dependence.
The initial point Ta0 is determined, as before, by Eq. (11).

We are now in position to describe the laws of motion of bound-
aries aðtÞ and bðtÞ; to accomplish this, let us integrate expression
(7) and arrive at the law for lower boundary

bðtÞ ¼ bð0Þ �
Z t

0

asuðTbðTaÞ þmS1Þ
TbðTaÞub

dt; ð15Þ

where TbðTaÞ and TaðtÞ are determined by expressions (10), (13) or
(14). The law of upper boundary follows from Eq. (11) and has the
form

aðtÞ ¼ bðtÞ þ Q1ðTaðtÞ; tÞ: ð16Þ
4. Model predictions for field experiments

Let us now compare model predictions and experimental data
on false bottom evolution taken from the AIDJEX and the SHEBA
field experiments (see, among others, [20,21]). Since the solid frac-
tion ub is in close proximity to unity, we choose ub ¼ 0:99. Fig. 2
demonstrates the bottom elevation change during AIDJEX calcu-
lated on the basis of expression (15) for different friction velocities
ðb1ðtÞ ¼ bðtÞ � bð0ÞÞ and Fig. 3 shows time oscillations of the solid
fraction ua and the heat flux J ¼ ahqwcwuðT1 � TbÞ that goes from
the false bottom – ocean interface to the ocean (this direction cor-
responds to negative values of J). The far-field temperature, T1, and
salinity, S1, as well as the friction velocity, u, can vary with time in
natural conditions. Figs. 4 and 5 demonstrate such variations mea-
sured during the 1998 SHEBA campaign in accordance with ref.
[10]. Using these experimental data as the base let us take a brief
look at time-to-time variation of the false bottom thickness
hðtÞ ¼ aðtÞ � bðtÞ. Fig. 5 demonstrates this function calculated on
the basis of expressions (14)–(16). It is readily seen that the essen-
tially increasing function hðtÞ becomes decreasing after day 207.
The reason is that the storm came through, which substantially in-
creased function uðtÞ (see Fig. 5 and Ref. [10]). As a result, the salt
flux from the ocean to the ice increases, and in its turn a rapid abla-
tion of the false bottom occurs. An increase of the brine salinity re-
duces the phase transition temperature Tb ¼ �mSb which becomes
less than the ocean temperature T1. By this is meant that the tem-
F
it
fi
fi
o
te
ðc
cm



Fig. 3. The solid fraction at the fresh water – false bottom interface and the heat
flux at the sea water – false bottom interface as the functions of time. These dep-
endences are plotted in accordance with function uðtÞ shown in Fig. 2.

Fig. 4. Far-field temperature and salinity from SHEBA data.

Fig. 5. Friction velocity from SHEBA data and calculated evolution of the thickness
of a false bottom (mushy layer), að0Þ � bð0Þ ¼ 1 cm.

Fig. 7. DT and heat flux oscillations predicted on the basis of our theory and SHEBA
data.

Fig. 8. Current and average heat transfer coefficients (Stanton numbers) calculated
on the basis of AIDJEX (in the case of uðtÞ) and SHEBA data. Horizontal lines show
corresponding average values, hSti ¼ 0:0067 for AIDJEX and hSti ¼ 0:0047 for SHEBA
data.
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perature difference DT ¼ T1 � Tb becomes negative and the heat
flux J changes its sign. In other words, the ocean–ice heat flux in
this case is directed toward the ice. Such a behavior is demon-
Fig. 6. Salinity and temperature oscillations predicted on the basis of our theory
and SHEBA data.
strated in Figs. 6 and 7 where all functions are shown in accor-
dance with the theory under consideration.

We now turn our attention to the question of current fluctua-
tions in a Stanton number

St ¼ �ah
T1 � Tb

T1 þmS1

shown in Fig. 8. A common way of treating ocean heat flux in the-
oretical and numerical models is to express the heat flux in terms of
the heat exchange coefficient (Stanton number), relating the aggre-
gate scale heat flux to ice interface friction velocity and elevation of
mixed layer temperature above freezing [10]. Results from several
studies have shown the Stanton number to be relatively uniform
[22]. Its average values hSti close to 0.0055 used in Ref. [10] for find-
ing the turbulent transfer coefficients.

5. Concluding remarks

In this paper, we have focused attention on the mathematical
model of false bottoms that play an important role in the energy
balance of Arctic sea ice. They frequently form at the interface be-
tween fresh and salt water bordering under-ice concavities in sum-
mer. During periods of the thickening of false bottoms there is a
significant heat flux into the mixed layer of order 10 W/m2 [10].
For example, the model under consideration predicts that the
ice–ocean heat flux can be directed upward or downward at differ-
ent times, with an average value of �12.9 W/m2 for AIDJEX and
�5.6 W/m2 for SHEBA data (the reason of upward direction is con-
nected with abrupt jumps of the friction velocity). This flux is com-
parable to other heat fluxes such as solar radiation divergence and
the upward ocean heat flux from depth. Taking into consideration
that under-ice melt pond formation might be a widespread phe-
nomenon in the Arctic [23], an important role of model predictions
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becomes clear to learn more about nonlinear dynamics of the Arc-
tic Seas.
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